Em 1857, três anos depois de sua tese de habilitação em Göttingen, Bernhard Riemann escreveu e publicou seu trabalho matemático mais importante e influinte, a *Teoria das funções abelianas*, que continha o desenvolvimento em particular do conceito de "superfície de Riemann" e suas aplicações.

Essas funções hiperelípticas, batizadas em homenagem ao matemático norueguês Niels Henrik Abel (1802-1829), são generalizações das funções elípticas, obtidas pela inversão de integrais elípticas. Kepler já tinha encontrado uma dessas integrais no problema do cálculo da curva elíptica e, em sua *Nova Astronomia*, tinha apelado a todos matemáticos europeus para ajudá-lo a resolver o problema. Somente com o trabalho de Gauss, Abel, Jacobi e, finalmente, Riemann é que se cumpriu o desejo de Kepler, resolvendo-se definitivamente o problema das funções elípticas, exatamente da maneira por ele pretendida.

A fim de mostrar que até mesmo funções gerais, como as hiperelípticas (abelianas) - que Jacobi inicialmente considerava "contrárias à razão" devido aos seus infinitos significados possíveis - são suscetíveis de apresentação completamente inteligível com a ajuda de superfícies riemannianas, Riemann fez uso do que chamou de *Princípio de Dirichlet* (ao mesmo tempo em que o definiu).

O princípio é empregado da teoria do potencial e nos
permite concluir a existência de uma função-solução desejada a partir de que se demonstre ter um valor único. Especificamente: se certos valores de contorno são dados (p.ex. gradientes de temperatura na borda de um disco), então, existe dentro do domínio em consideração precisamente uma função (constante e diferenciável), que: a) corresponde aos limites aos valores de contorno dados; e b) torna mínima uma integral específica (ex.: o gráfico da estacionário de temperatura). Fundamentalmente, este princípio é apenas uma versão do princípio de mínima ação adaptado a condições específicas.

Uma vez que Riemann concebeu todas as funções complexas (analíticas) como mapeamentos conformes e aboliu a "irracionalidade" (polivalência) das funções abelianas pela criação de uma superfície múltipla de Riemann, que é a forma de mapeamento/estrutura/superfície múltiplamente conectada (mas, simplesmente, com respeito à superfície), ele pode então usar o Princípio de Dirichlet (em princípio aplicável apenas a uma superfície simplesmente conectada) e aplicá-lo à superfície de Riemann, garantindo dessa maneira uma função unívoca, integrável, etc. Isto criou estruturas/mapeamentos/superfícies algébricas complexas e polivalentes, possuindo singularidades que não podiam ser ignoradas, acessíveis por meio de uma construção topológica engenhosa, com a aplicação do princípio de mínimo-máximo a representações inteligíveis e de cálculo simples.